
Lecture 29

Uniqueness Theorem

The uniqueness of a solution to a linear system of equations is an important concept in
mathematics. Under certain conditions, ordinary differential equation partial differential
equation and matrix equations will have unique solutions. But uniqueness is not always
guaranteed as we shall see. This issue is discussed in many math books and linear algebra
books [77,89]. The proof of uniqueness for Laplace and Poisson equations are given in [31,54]
which is slightly different from electrodynamic problems.

Just imagine how bizzare it would be if there are more than one possible solutions. One
has to determine which is the real solution. To quote Star Trek, we need to know who the
real McCoy is!1

29.1 The Difference Solutions to Source-Free Maxwell’s
Equations

In this section, we will prove uniqueness theorem for electrodynamic problems [32, 35, 50, 65,
83]. First, let us assume that there exist two solutions in the presence of one set of common
impressed sources Ji and Mi.

2 Namely, these two solutions are Ea, Ha, Eb, Hb. Both of them
satisfy Maxwell’s equations and the same boundary conditions. Are Ea = Eb, Ha = Hb?

To study the uniqueness theorem, we consider general linear anisotropic inhomogeneous
media, where the tensors µ and ε can be complex so that lossy media can be included. In
the frequency domain, lets assume two possible solutions with one given set of sources Ji and

1This phrase was made popular to the baby-boom generation, or the Trekkies by Star Trek. It actually
refers to an African American inventor.

2It is not clear when the useful concept of impressed sources were first used in electromagnetics even though
it was used in [172] in 1936. These are immutable sources that cannot be changed by the environment in
which they are immersed.
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Mi, it follows that

∇×Ea = −jωµ ·Ha −Mi (29.1.1)

∇×Eb = −jωµ ·Hb −Mi (29.1.2)

∇×Ha = jωε ·Ea + Ji (29.1.3)

∇×Hb = jωε ·Eb + Ji (29.1.4)

By taking the difference of these two solutions, we have

∇× (Ea −Eb) = −jωµ · (Ha −Hb) (29.1.5)

∇× (Ha −Hb) = jωε · (Ea −Eb) (29.1.6)

Or alternatively, defining δE = Ea −Eb and δH = Ha −Hb, we have

∇× δE = −jωµ · δH (29.1.7)

∇× δH = jωε · δE (29.1.8)

The difference solutions, δE and δH, satisfy the original source-free Maxwell’s equations.
Source-free here implies that we are looking at the homogeneous solutions of the pertinent
partial differential equations constituted by (29.1.7) and (29.1.8).

To prove uniqueness, we would like to find a simplifying expression for ∇ · (δE × δH∗).
By using the product rule for divergence operator, it can be shown that

∇ · (δE× δH∗) = δH∗ · ∇ × δE− δE · ∇ × δH∗ (29.1.9)

Then by taking the left dot product of δH∗ with (29.1.7), and then the left dot product of
δE with the complex conjugation of (29.1.8), we obtain

δH∗ · ∇ × δE = −jωδH∗ · µ · δH
δE · ∇ × δH∗ = −jωδE · ε∗ · δE∗ (29.1.10)

Now, taking the difference of the above, we get

δH∗ · ∇ × δE− δE · ∇ × δH∗ = ∇ · (δE× δH∗)
= −jωδH∗ · µ · δH + jωδE · ε∗ · δE∗ (29.1.11)
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Figure 29.1: Geometry for proving the uniqueness theorem. We like to know the requisite
boundary conditions on S plus the type of media inside V in order to guarantee the uniqueness
of the solution in V .

Next, we integrate the above equation (29.1.11) over a volume V bounded by a surface S
as shown in Figure 29.1. After making use of Gauss’ divergence theorem, we arrive at

�
V

∇ · (δE× δH∗)dV =

�
S

(δE× δH∗) · dS

=

�
V

[−jωδH∗ · µ · δH + jωδE · ε∗ · δE∗]dV (29.1.12)

And next, we would like to know the kind of boundary conditions that would make the
left-hand side equal to zero. It is seen that the surface integral on the left-hand side will be
zero if:3

1. If n̂× E is specified over S for the two possible solutions, so that n̂× Ea = n̂× Eb on S.
Then n̂× δE = 0, which is the PEC boundary condition for δE, and then4


S
(δE× δH∗) · n̂dS =



S

(n̂× δE) · δH∗dS = 0.

2. If n̂×H is specified over S for the two possible solutions, so that n̂×Ha = n̂×Hb on S.
Then n̂× δH = 0, which is the PMC boundary condition for δH, and then


S
(δE× δH∗) · n̂dS = −



S

(n̂× δH∗) · δEdS = 0.

3. Let the surface S be divided into two mutually exclusive surfaces S1 and S2.5 If n̂×E is

3In the following, please be reminded that PEC stands for “perfect electric conductor”, while PMC stands
for “perfect magnetic conductor”. PMC is the dual of PEC. Also, a fourth case of impedance boundary
condition is possible, which is beyond the scope of this course. Interested readers may consult Chew, Theory
of Microwave and Optical Waveguides [83].

4We use the vector identity that a · (b× c) = c · (a×b) = b · (c× a). Also, from Section 1.3.3, dS = n̂dS.
5In math parlance, S1 ∪ S2 = S.



320 Electromagnetic Field Theory

specified over S1, and n̂×H is specified over S2. Then n̂×δE = 0 (PEC boundary condition)
on S1, and n̂ × δH = 0 (PMC boundary condition) on S2. Therefore, the left-hand side
becomes


S
(δE× δH∗) · n̂dS =

�
S1

+
�
S2

=
�
S1

(n̂× δE) · δH∗dS
−
�
S2

(n̂× δH∗) · δEdS = 0.

Thus, under the above three scenarios, the left-hand side of (29.1.12) is zero, and then
the right-hand side of (29.1.12) becomes

�
V

[−jωδH∗ · µ · δH + jωδE · ε∗ · δE∗]dV = 0 (29.1.13)

For lossless media, µ and ε are hermitian tensors (or matrices6), then it can be seen, using
the properties of hermitian matrices or tensors, that δH∗ ·µ · δH and δE · ε∗ · δE∗ are purely
real. Taking the imaginary part of the above equation yields

�
V

[−δH∗ · µ · δH + δE · ε∗ · δE∗]dV = 0 (29.1.14)

The above two terms correspond to stored magnetic field energy and stored electric field
energy in the difference solutions δH and δE, respectively. The above being zero does not
imply that δH and δE are zero.

For resonant solutions, the stored electric energy can balance the stored magnetic energy.
The above resonant solutions are those of the difference solutions satisfying PEC or PMC
boundary condition or mixture thereof. Also, they are the resonant solutions of the source-free
Maxwell’s equations (29.1.7). Therefore, δH and δE need not be zero, even though (29.1.14)
is zero. This happens when we encounter solutions that are the resonant modes of the volume
V bounded by the surface S.

29.2 Conditions for Uniqueness

Uniqueness can only be guaranteed if the medium is lossy as shall be shown later. It is also
guaranteed if lossy impedance boundary conditions are imposed.7 First we begin with the
isotropic case.

29.2.1 Isotropic Case

It is easier to see this for lossy isotropic media. Then (29.1.13) simplifies to

�
V

[−jωµ|δH|2 + jωε∗|δE|2]dV = 0 (29.2.1)

6Tensors are a special kind of matrices.
7See Chew, Theory of Microwave and Optical Waveguides.
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For isotropic lossy media, µ = µ′ − jµ′′ and ε = ε′ − jε′′. Taking the real part of the above,
we have from (29.2.1) that

�
V

[−ωµ′′|δH|2 − ωε′′|δE|2]dV = 0 (29.2.2)

Since the integrand in the above is always negative definite, the integral can be zero only if

δE = 0, δH = 0 (29.2.3)

everywhere in V , implying that Ea = Eb, and that Ha = Hb. Hence, it is seen that uniqueness
is guaranteed only if the medium is lossy.

The physical reason is that when the medium is lossy, a homogeneous solution (also called
a natural solution) which is pure time-harmonic solution cannot exist due to loss. The modes,
which are the source-free solutions of Maxwell’s equations, are decaying sinusoids. But when
we express equations (29.1.1) to (29.1.4) in the frequency domain, we are seeking solutions
for which ω is real. Thus decaying sinusoids are not among the possible solutions, and hence,
they are not in the solution space.

Notice that the same conclusion can be drawn if we make µ′′ and ε′′ negative. This
corresponds to active media, and uniqueness can be guaranteed for a time-harmonic solution.
In this case, no time-harmonic solution exists, and the resonant solution is a growing sinusoid.

29.2.2 General Anisotropic Case

The proof for general anisotropic media is more complicated. For the lossless anisotropic
media, we see that (29.1.13) is purely imaginary. However, when the medium is lossy, this
same equation will have a real part. Hence, we need to find the real part of (29.1.13) for the
general lossy case.

About taking the Real and Imaginary Parts of a Complicated Expression

To this end, we digress on taking the real and imaginary parts of a complicated expression.
Here, we need to find the complex conjugate8 of (29.1.13), which is scalar, and add it to itself
to get its real part. To this end, we will find the conjugate of its integrand which is a scalar
number.

First, the complex conjugate of the first scalar term in the integrand of (29.1.13) is9

(−jωδH∗ · µ · δH)∗ = jωδH · µ∗ · δH∗ = jωδH∗ · µ† · δH (29.2.4)

Similarly, the complex conjugate of the second scalar term in the same integrand is

(jωδE · ε∗ · δE∗)∗ = −jωδE∗ · ε† · δE (29.2.5)

8Also called hermitian conjugate.
9To arrive at these expressions, one makes use of the matrix algebra rule that if D = A · B · C, then

D
t

= C
t ·Bt ·At

. This is true even for non-square matrices. But for our case here, A is a 1× 3 row vector,
and C is a 3×1 column vector, and B is a 3×3 matrix. In vector algebra, the transpose of a vector is implied.
Also, in our case here, D is a scalar, and hence, its transpose is itself.



322 Electromagnetic Field Theory

But
jωδE · ε∗ · δE∗ = jωδE∗ · ε† · δE (29.2.6)

The above gives us the complex conjugate of the scalar quantity (29.1.13) and adding it to
itself, we have

�
V

[−jωδH∗ · (µ− µ†) · δH− jωδE∗ · (ε− ε†) · δE]dV = 0 (29.2.7)

For lossy media, −j(µ − µ†) and −j(ε − ε†) are hermitian positive matrices. Hence the
integrand is always positive definite, and the above equation cannot be satisfied unless δH =
δE = 0 everywhere in V . Thus, uniqueness is guaranteed in a lossy anisotropic medium.

Similar statement can be made for the isotropic case if the medium is active. Then the
integrand is positive definite, and the above equation cannot be satisfied unless δH = δE = 0
everywhere in V , thereby proving that uniqueness is satisfied.

29.3 Hind Sight Using Linear Algebra

The proof of uniqueness for Maxwell’s equations is very similar to the proof of uniqueness for
a matrix equation [77]. As you will see, the proof using linear algebra is a lot simpler due to
the simplicity of notations. To see this, consider a linear algebraic equation

A · x = b (29.3.1)

If a solution to a matrix equation exists without excitation, namely, when b = 0, then the
solution is the null space solution [77], namely, x = xN . In other words,

A · xN = 0 (29.3.2)

These null space solutions exist without a “driving term” b on the right-hand side. For
Maxwell’s equations, b corresponds to the source terms. The solution in (29.3.2) is like the
homogeneous solution of an ordinary differential equation or a partial differential equation
[89]. In an enclosed region of volume V bounded by a surface S, homogeneous solutions
are the resonant solutions (or the natural solutions) of this Maxwellian system. When these
solutions exist, they give rise to non-uniqueness. Note that these resonant solutions in the
time domain exist for all time if the cavity is lossless.

Also, notice that (29.1.7) and (29.1.8) are Maxwell’s equations without the source terms.
In a closed region V bounded by a surface S, only resonant solutions for δE and δH with the
relevant boundary conditions can exist when there are no source terms.

As previously mentioned, one way to ensure that these resonant solutions (or homoge-
neous solutions) are eliminated is to put in loss or gain. When loss or gain is present, then
the resonant solutions are decaying sinusoids or growing sinusoids (see Section 22.1.1 for an
analogue with LC tank circuit). Since we are looking for solutions in the frequency domain,
or time harmonic solutions, the solutions considered are on the real ω axis on the complex ω
plane. Thus the non-sinusoidal solutions are outside the solution space: They are not part of
the time-harmonic solutions (which are on the real axis) that we are looking for. Therefore,
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complex resonant solutions which are off the real axis, and are homogeneous solutions, are
not found on the real axis.

We see that the source of non-uniqueness is the homogeneous solutions or the resonant
solutions of the system that persist for all time. These solutions are non-causal, and they are
there in the system since the beginning of time to time ad infinitum. One way to remove these
resonant solutions is to set them to zero at the beginning by solving an initial value problem
(IVP). However, this has to be done in the time domain. One reason for non-uniqueness is
because we are seeking the solutions in the frequency domain.

29.4 Connection to Poles of a Linear System

The output to input of a linear system can be represented by a transfer function H(ω) [52,173].
If H(ω) has poles, and if the system is lossless, the poles are on the real axis. Therefore, when
ω = ωpole, the function H(ω) becomes undefined. In other words, one can add a constant
term to the output, and the ratio between output to input is still infinity. This also gives
rise to non-uniqueness of the output with respect to the input. Poles usually correspond to
resonant solutions, and hence, the non-uniqueness of the solution is intimately related to the
non-uniqueness of Maxwell’s equations at the resonant frequencies of a structure. This is
illustrated in the upper part of Figure 29.2.

Figure 29.2: The non-uniqueness problem is intimately related to the locations of the poles
of a transfer function being on the real axis, when one solves a linear system using Fourier
transform technique. For a lossless system, the poles are located on the real axis. When
performing a Fourier inverse transform to obtain the solution in the time domain, then the
Fourier inversion contour is undefined, and the solution cannot be uniquely determined.
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If the input function is f(t), with Fourier transform F (ω), then the output y(t) is given
by the following Fourier integral, viz.,

y(t) =
1

2π

� ∞
−∞

dωejωtH(ω)F (ω) (29.4.1)

where the Fourier inversion integral path is on the real axis on the complex ω plane. The
Fourier inversion integral is undefined or non-unique if poles exist on the real ω axis.

However, if loss is introduced, these poles will move away from the real axis as shown
in the lower part of Figure 29.2. Then the transfer function is uniquely determined for all
frequencies on the real axis. In this way, the Fourier inversion integral in (29.4.1) is well
defined, and uniqueness of the solution is guaranteed.

When the poles are located on the real axis yielding possibly non-unique solutions, a
remedy to this problem is to use Laplace transform technique [52]. The Laplace transform
technique allows the specification of initial values, which is similar to solving the problem as
an initial value problem (IVP).

If you have problem wrapping your head around this concept, it is good to connect back
to the LC tank circuit example. The transfer function H(ω) is similar to the Y (ω) of (22.1.4).
The transfer function has two poles. If there is no loss, then the poles are located on the
real axis, rendering the Fourier inversion contour undefined in (29.4.1). Hence, the solution
is non-unique. However, if infinitesimal loss is introduced by setting R 6= 0, then the poles
will migrate off the real axis making (29.4.1) well defined!

29.5 Radiation from Antenna Sources and Radiation Con-
dition

The above uniqueness theorem guarantees that if we have some antennas with prescribed
current sources on them, the radiated field from these antennas are unique. To see how this
can come about, we first study the radiation of sources into a region V bounded by a large
surface Sinf as shown in Figure 29.4 [35].

Even when n̂×E or n̂×H are specified on the surface at Sinf, the solution is nonunique
because the volume V bounded by Sinf, can have many resonant solutions. In fact, the region
will be replete with resonant solutions as one makes Sinf become very large.

To have more insight, we look at the resonant condition of a large rectangular cavity given
by (21.2.3) reproduced here as

β2 =
ω2

c2
=
(mπ
a

)2

+
(nπ
b

)2

+
(pπ
d

)2

(29.5.1)

The above is an equation of an Ewald sphere in a 3D mode space, but the values of βx = mπ
a ,

βy = nπ
b , and βz = pπ

d are discrete. We can continuously change the operating frequency
ω above until the above equation is satisfied. When this happens, we encounter a resonant
frequency of the cavity. At this operating frequency, the solution to Maxwell’s equations
inside the cavity is non-unique. As the dimensions of the cavity become large or a, b, and
d are large, then the number of ω’s or resonant frequencies that the above equation can be
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satisfied or approximately satisfied becomes very large. This is illustrated Figure 29.3 in 2D.
Hence, the chance of the operating frequency ω coinciding with a resonant mode of the cavity
is very high giving rise to nonuniqueness. This is even more so when the cavity becomes very
large. Hence, the chance of operating inside the cavity with unique solution is increasingly
difficult. This above argument applies to cavities of other shapes as well.

Figure 29.3: For very large cavity, the grid spacing in the mode space (or Fourier space)
becomes very small. Then the chance that the sphere surface encounters a resonant mode is
very high. When this happens, the solution to the cavity problem is non-unique.

The way to remove these resonant solutions is to introduce an infinitesimal amount of loss
in region V . Then these resonant solutions will disappear from the real ω axis, where we seek
a time-harmonic solution. Now we can take Sinf to infinity, and the solution will always be
unique even if the loss is infinitesimally small.

Notice that if Sinf → ∞, the waves that leave the sources will never be reflected back
because of the small amount of loss. The radiated field will just disappear into infinity.
This is just what radiation loss is: power that propagates to infinity, but never to return.
In fact, one way of guaranteeing the uniqueness of the solution in region V when Sinf is
infinitely large, or that V is infinitely large is to impose the radiation condition: the waves
that radiate to infinity are outgoing waves only, and never do they return. This is also called
the Sommerfeld radiation condition [174]. . Uniqueness of the field outside the sources
is always guaranteed if we assume that the field radiates to infinity and never to return. This
is equivalent to solving the cavity solutions with an infinitesimal loss, and then letting the
size of the cavity become infinitely large.
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Figure 29.4: The solution for antenna radiation is unique because we impose the Sommerfeld
radiation condition when seeking the solution. That is we assume that the radiation wave
travels to infinity but never to return. This is equivalent to assuming an infinitesimal loss
when seeking the solution in V .


